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To the long established idea of bounding turbulent convective heat transport by a
variational method based on energetic constraints, we now add a richer class of
‘z-constraints’ with the hope of tightening bounds considerably. We establish that
only certain moments of the governing equations are effective for this purpose. We
explore the initial consequences of groups of such constraints by use of perturbation
theory, which clarifies the need that a given set of elements be mutually congruent.

1. Introduction
The idea of characterizing statistically steady turbulence by looking for extrema

of functionals of the flow subject to integral consequences of the Navier–Stokes
equations was initiated in Malkus (1960). Following on this work, Howard (1963)
and Busse (1969) deduced bounds on the heat transported in statistically steady
planar Boussinesq convection. Doering & Constantin (1996), and more recently
Kerswell (1997), reproduced, ceteris paribus, the same bound using, not the statistical
stationarity hypothesis, but a long-time-average version of the equations. It is not
clear which theory better models experimental observables measured over finite space
and time. It is clear, though, that the bound obtained bears little resemblance to the
data – at least over the experimentally accessible range of R, displayed in figure 1,
where the solid curve labelled NB indicates the best current upper bound on the
Nusselt number Nu for finite but arbitrary Prandtl number, σ. It lies disappointingly
far above the variety of experimental measurements (indicated by dotted lines).

Our main concern is the large gap between the bound and the data at intermediate
Rayleigh numbers. At larger R, it has long been suspected (Kraichnan 1962) that
the data veer upward more in accord with the upper bound (though possibly with
logarithmic corrections). Interestingly, however, the latest experiment (Niemela et al.
2000), which ranges over 106 6 R 6 1017 in cryogenic helium gas, shows no such
tendency. Rather, the data agree rather well with a single power-law with exponent
approximately 0.31.

The bound plotted was obtained using only two integral consequences of the
Boussinesq equations: the ‘power integrals’. Speculation that these bounds could
actually approach measured experimental values over a wide range of R as more
and more statistically steady moments are included as constraints into the variational
theory is tempting. Prescient adumbration both of this goal and of the impediments
to its achievement is seen in the following quotation, drawn from Busse (1978).
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Figure 1. The Howard–Busse–Doering–Constantin upper bound (based on the constraints
(2.16)–(2.20)) and experimental data. N1, Howard’s single-α bound, computed here; NH

1 , asymptotic
estimate from Howard (1963); NB , Busse’s (1969) R →∞ infinite-α bound; Nexpt, experimental data
for various σ and domain sizes.

The major task in the further development of the optimum theory of turbulence is
the introduction of additional constraints in order to improve the bounds. Although it
is in principle possible to approach the actual solutions of the Navier–Stokes equations
with the optimum transport by adding the hierarchy of moments of the equations as
constraints, in practical applications it has proven to be rather difficult to proceed
beyond the energetic constraints considered in this article.

However, except for singular situations in which the momentum equation can be
reduced to a linear, time-independent, relation,† no improvements on these bounds
have been obtained to date even though other statistically steady constraints have
been suggested in the literature. Ayyaswamy and Busse (reported in Busse 1978) have
looked into breaking down 〈|u|2〉t = 0 into components (poloidal and toroidal) for
the case of Couette flow, but only describe the results as ‘not very encouraging’.
Using the idea of an adjacent trial field (also exploited in Worthing 1995) Kerswell &
Soward (1996) have confirmed that the bound remains unchanged. Malkus & Smith
(1989), also with the shear flow problem in mind, suggested the constraint 〈ω2〉t = 0
(where ω is a component of vorticity) due to its relationship with the Orr–Sommerfeld
equation, but did not pursue its consequences.

It is näıve to think that each proposed constraint might be isolated and its ultimate
contribution to improving a bound determined without regard to possible interaction
with other constraints. Indeed, any single constraint, alone, may not limit Nu. Only
collections of constraints can meaningfully be discussed as a variational problem.
Thus, one can calculate the heat flux with and without a particular test constraint
but the net reduction, or lack thereof, can only be spoken of with reference to the

† For example, Chan (1971) took the large Prandtl number limit of the convection equations and
Gupta & Joseph (1973) took the large Prandtl–Darcy number limit of the porous layer convection
equations from the outset.
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particular nucleus of other constraints used. For want of a more powerful method,
this inevitably somewhat heuristic approach is the route we shall follow at the start
of § 3, although a limited basis for classification will emerge.

These ambiguities notwithstanding, there are some constraints about which we can
make a definitive assessment. Remarkably enough, these ‘inert constraints’ abound
and, by a process of their elimination, we are directed to a subclass of the horizontally
averaged moments of the governing equations, so-called z-constraints. Using finite-
amplitude techniques, the effectiveness of a few of the simplest of these is examined
near the point of bifurcation in § 3. Based on this analysis, promising problems for
future research are suggested and the simplest of these is solved numerically in § 4,
where it is shown that even one added constraint, on enstrophy, makes a significant
qualitative change in the asymptotic bound on heat flux.

1.1. Governing equations and statistical steadiness

The velocity and temperature of convecting fluids are often described well by the
Boussinesq equations of motion (cf. Chandrasekhar 1961), which (after scaling) can
be written

σ−1[vt + v · ∇v] + ∇P = ∇2v + RTk̂, (1.1a)

∇ · v = 0, Tt + v · ∇T = ∇2T. (1.1b, c)

The Rayleigh number R = αg∆Td3/κν and the Prandtl number σ = ν/κ are the two
dimensionless parameters describing convection between horizontal infinite plates

separated by a distance d in the z-direction (denoted by the unit vector k̂).† For this
geometry,

(·) ≡ limL→∞
∫ L

−L

∫ L

−L
(·) dx dy /(4L2) 〈(·)〉 ≡

∫ 1

0

(·) dz

(a horizontal average) (a volume average)

are useful averages and it is presumed that, even in large finite domains, similar
averages of flow quantities are independent of time (the condition of statistical
stationarity). With that, it is convenient to decompose the Boussinesq equations in
the Reynolds manner,

T = T (z) + θ, v = U (z) + u, ∇P = ∇P + ∇p,
ū = 0, θ̄ = 0, ∇p = 0,

and so obtain

∇ ·U = ∇ · u = 0, (1.2a, b)

σ−1 [ut + u · ∇u+U · ∇u+ wU z] + ∇P + ∇p = U zz + ∇2u+ R(T + θ)k̂, (1.2c)

θt + u · ∇θ +U · ∇θ + wT ′ = T ′′ + ∇2θ. (1.2d )

Averaging (1.2) gives

k̂ ·U = 0, (θw)z = T ′′, (wu)z + ∇P = U ′′ + RT k̂,

† Of course, in a horizontally finite domain, the presence of lateral boundaries must be accounted
for. It has often been supposed that this source of scaling dependence is lost as the domain is
extended but only recently, in Worthing (2001), has the case actually been argued in rigorous detail.
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which can be regarded as expressions for mean quantities in terms of fluctuating quan-
tities. Though pressure-driven shear flows are important, here treatment is confined

to the case k̂ × ∇P = 0. Before the experimental work of Krishnamurti & Howard
(1981) it had been assumed that under such conditions no mechanism existed to
support large-scale mean velocities. Consequently, early bounds on Nu were derived
under the added assumption U = 0. Within the confines of the variational theory,
if the constraint U = 0 is now relaxed, the corresponding bound can only increase,
should it change at all. In fact, at least for the simplest problem based solely on
the power integrals, Howard (1990) later showed that his original bound (Howard
1963) remains unaltered when the constraint U = 0 is dropped. Based on Kerswell’s
demonstrated coincidence of the Howard–Busse bound with that obtained via the
Doering–Constantin formulation (Kerswell 1997), and the absence of any restrictions
on U in the latter, evidently the results obtained, while including continuity (Howard
1963; Busse 1969) and the bounds at infinite σ (Chan 1971), also hold equally well
(when maximizing the heat flux) without the assumption U = 0. We verified this
numerically for the single-α case subject to boundary conditions, continuity and
the power integrals. As one might expect, maximum heat flux occurs for full θ–w
correlation and zero u–w correlation.

2. Constraints – a general approach
The arguments in the succeeding three subsections are cumulative in their effect

on estimates of the heat flux. Because the reader may find it hard to keep that
larger context in mind, we have provided a roadmap in table 1 near the close of
this section. That table outlines the cumulative hierarchy of constraints and the
successive potential reductions in bounds on the Nusselt number, keying each pair to
the subsection(s) in which it is discussed.

2.1. Bounds without the continuity condition

With the added assumption that U = 0, Howard (1963) derived the bound

Nu− 1 6 (3R/64)1/2 (2.1)

based on the boundary conditions θ = w = 0 at z = 0, 1 and the following form of
the power integrals (Malkus, 1954a, b):

R 〈θw〉 =
〈|∇u|2〉 , (2.2a)

− 〈θw{θw − 〈θw〉 − 1}〉 =
〈|∇θ|2〉 . (2.2b)

No other information about the fluid dynamics was used. At any fixed R, his optimal
fields (those that transport the most heat from this class) have the rather simple form

θ = Af(z), w = Bf(z), u = v = 0, (2.3a, b, c)

where A and B are scalar coefficients. Notice that these fields possess no vorticity and
the full (incompressible) vorticity equation

ωt + u · ∇ω − ω · ∇u = ∇2ω + R∇θ × k̂, ω = ∇× u, (2.4a, b)

is then satisfied outright! It is correct to say that the full time-dependent vorticity
equation, alone, places no further restriction upon Howard’s original variational
problem and his upper bound (2.1) cannot be reduced by including it or any of
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its simply related statistically steady moments into the theory. This is a wonderful
example of how constraints may/must rely on each other for potency. Evidently,
without the continuity constraint, the entire vorticity equation is limp.

Many other constraints are however not satisfied by Howard’s optimal fields (2.3).
The continuity equation ∇ · u = 0, for example, is clearly violated. Other statistical
moments, like (θ2)t = 0, are neither included into the variational theory nor satisfied
by its solution. Higher-order boundary conditions, i.e. wz = 0 (no-slip) or wzz = 0
(slip), are not maintained. The very definition, θ̄ = 0, is violated. Offhand, it is not
clear what effects these or other additional constraints might have on the bound
(2.1). Certainly they provide further restrictions on the class of fields admissible when
maximizing Nu. It seems encouraging that the ‘old’ optimal fields do not satisfy any of
the new constraints. One wonders which of these many ‘new’ constraints might most
profitably be appended to Howard’s problem with the intent of improving upon his
bound. Howard (1963) and Busse (1969) evidently felt the continuity condition was
the logical next constraint and probably rightly so: it turns out that ‘nearby’ fields,
transporting nearly the same amount of heat, can be constructed that do satisfy many
of these other additional requirements. Besides the continuity condition, the work
presented below has led to the emergence of (θ3)t = 0 as a promising alternative.

Prior to this work, Howard (private communication) has kindly relayed to us that
his original bound is not reduced when the additional constraint ∇ · u = 0 (which
amounts to w̄ = 0) is included into the variational theory. This is demonstrated below.
In all, it is shown that the bound (2.1) cannot be reduced by the inclusion of the
following constraints:

[θ̄ = 0, w̄ = 0, 〈θm〉t = 0, (θ2m)t = 0, m = 1, 2, . . . .] (2.5)

This is an interesting conclusion since, as shown shortly, only the volume-averaged
moments 〈θm〉t = 0 are already satisfied by Howard’s optimal fields (2.3).

2.1.1. Preliminaries on Howard’s work

Using the power integrals (2.2), the convective heat transport can be written as
a functional that is homogeneous in both θ and u. Though formulated slightly
differently below, Howard essentially solved for NH − 1 where

NH − 1 ≡ max
θ,u
〈θw〉 = max

θ,u

〈θw〉2 − R−1
〈|∇θ|2〉 〈|∇u|2〉〈(

θw − 〈θw〉)2
〉 (2.6)

and θ = w = 0 at z = 0, 1. Because NH − 1 is cast as a homogeneous functional
of θ and u that satisfy the boundary conditions, one can satisfy (2.2) after the fact

provided only that NH − 1 > 0. The requisite rescaling of trial fields θ̂ and û is simply[
(N − 1)

〈|∇û|2〉
R〈θ̂ŵ〉

]1/2

θ̂ ⇒ θ,

[
(N − 1)R〈θ̂ŵ〉
〈|∇û|2〉

]1/2

û⇒ u. (2.7a, b)

With this observation, the power integrals need not be considered further. Inspection
of (2.6) clearly reveals that the optimal fields will have u = v = 0 and, as stated earlier,
Howard (1963) showed that they have the even simpler form (2.3). Incorporating this
information into (2.6) gives

NH − 1 = max
f(z)

〈
f2
〉2 − R−1

〈
f2
z

〉2〈(
f2 − 〈f2〉)2

〉 (2.8)
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with f(0) = f(1) = 0. Using boundary layer techniques, Howard solved (in the large-R
limit) the Euler–Lagrange equations associated with (2.8) and obtained the asymptotic
result (2.1).

2.1.2. Including constraints θ̄ = w̄ = 0

Now consider the same problem but with the added requirements θ̄ = w̄ = 0. The
solution to the maximization problem with these constraints cannot be larger than the
solution to the maximization problem without these constraints. Yet, a candidate field
with heat flux approaching NH is produced below that satisfies all of the requirements,
including θ̄ = w̄ = 0. Consequently, the upper bound on Nu remains unchanged.

Consider the single-α family

θ = Af(z)φ(x, y), w = Bf(z)φ(x, y), u = v = 0

where

∇2
Hφ = −α2φ, φ̄ = 0, φ2 = 1,

α is a free parameter and the amplitudes A and B are chosen so that the power
integrals are satisfied.† Provided α is not identically zero, both w̄ = 0 and θ̄ = 0 as
desired. Direct substitution into the expression (2.6) for Nu− 1 yields

Nu(f; α)− 1 ≡
〈
f2
〉2 − R−1

〈
f2
z + α2f2

〉2〈(
f2 − 〈f2〉)2

〉 . (2.9)

Clearly by setting this f(z) to be Howard’s ‘old’ f(z) as derived from (2.8) and
then letting α become smaller and smaller, the Nusselt number associated with this
trial field approaches NH from below. It must be concluded that, in the infinite
domain, Howard’s original bound cannot be improved upon solely by introducing the
additional constraints θ̄ = w̄ = 0 into the theory.

2.1.3. Including moments of θ

Results of the sort just presented are extended to encompass the entire class of
moments,

θ̄ = 0, w̄ = 0, 〈θm〉t = 0, (θ2m)t = 0, m = 1, 2, . . . . (2.10)

Indeed, it is demonstrated that Howard’s bound (2.1) based on the boundary con-
ditions and power integrals alone, cannot be improved by the imposition of the
constraints (2.10). The method here is similar to that of the last section. A family of
trial fields is constructed that satisfies all of the constraints (2.10). It is observed that
a member within this class possesses a heat flux arbitrarily close to the bound (2.1),
and this proves the claim.

We begin with the Euler–Lagrange equations associated with maximizing 〈θw〉
subject to the power integrals (2.2), alone, which, after elimination of multipliers,
reduce to

wT ′ − ∇2θ = 0, θT ′k̂ −
〈|∇θ|2〉
R 〈θw〉 ∇

2u = 0, (2.11a, b)

where T ′ = θw − 〈θw〉 − 1. Any and all solutions of the above system will satisfy the

† As before, such values of A and B are always possible, for any (f(z), α) pair, providedNu(f; α)−1
(as calculated by (2.9)) is positive, as will generally be true since it is the quantity being maximized.
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power integrals. Equations (2.11) admit solutions of the form

w = ŵ(z; α)
√

2 cos (αx), θ = θ̂(z, α)
√

2 cos (αx), u = v = 0. (2.12)

From Howard’s work, it is known that the solution of (2.11) with the maximum heat
flux is symmetric about z = 1/2 and is the member of (2.12) with α = 0. Based on the
regularity of the perturbation in α as well as the variational genesis of the equations,
it is assumed that even solutions of (2.11) exist at small α. This is all that is required
to prove the results.

The class of moment constraints

1

m
〈θm〉t︸ ︷︷ ︸

I

+
1

m
〈∇ · (θmu)〉︸ ︷︷ ︸

II

+
〈
θm−1

[
wT ′ − ∇2θ

]〉︸ ︷︷ ︸
III

−
〈
θm−1T ′′

〉
︸ ︷︷ ︸

IV

= 0 (2.13)

and the somewhat stronger horizontally averaged versions

1

m
(θm)t︸ ︷︷ ︸

I

+
1

m
(θmw)z︸ ︷︷ ︸

II

+ θm−1
[
wT ′ − ∇2θ

]︸ ︷︷ ︸
III

− θm−1T ′′︸ ︷︷ ︸
IV

= 0 (2.14)

follow directly from the Boussinesq ‘θ’ equation,

θt + u · ∇θ + wT ′ = ∇2θ + T ′′.

For the fields outlined in this section (namely, fields of the form (2.12), satisfying
(2.11) and boundary conditions), each of the above terms I–IV in equation (2.13)
vanishes independently for all m:

term I vanishes by statistically steadiness;
term II vanishes by the divergence theorem and boundary conditions;
term III vanishes by (2.11);
term IV vanishes by symmetry in the z-direction.

Terms I and III vanish, similarly, in equation (2.14). Yet, without the subsequent z-
integration, terms II and IV do not vanish as their counterparts do in equation (2.13).
However, one other mechanism by which these terms may be zero is x-orthogonality.
It follows directly that if α 6= 0 then odd multiples of single-α fields, e.g. (2.12), vanish
under horizontal averaging. So, at least when m is even, equation (2.14) is indeed
satisfied.

To sum up, a one-parameter (α) family of fields defined by (2.12) and (2.11) has
been devised. As such, each member also satisfies the constraints (2.10) provided
α is not identically zero. However, in the infinite domain α may be taken smaller
and smaller. By considering the variational form of the heat flux (2.6) and the fact
that Howard’s solution is the exact limit of our class as α → 0, it is established
that the heat transported by these fields comes arbitrarily close to Howard’s bound
(2.1). This proves that Howard’s bound Nu − 1 6 (3R/64)1/2, which is based on
maximizing the heat flux among all fields satisfying the power integrals and boundary
conditions alone, cannot be reduced by including the additional constraints (2.10) in
the variational theory. Based on these findings and the earlier observation that the
full vorticity equation is satisfied by Howard’s original fields,

∇ · u = 0 and (θ3)t = 0

emerge as perhaps the simplest, potentially immediately influential, constraints to
consider including next into the theory.
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2.2. Bounds with the continuity condition

This section mirrors the previous one in attempting to analyse the inclusion of ‘new’
constraints into the upper bound theory. The difference, here, is that the continuity
condition, ∇ · u = 0, is always included in the nucleus of constraints used as a starting
point for the assessment of others.

In the last section the maximization problems were solved exactly, even with
the additional constraints. If R 6 32 000 and only some of the new constraints
are used, then this remains true. However, for larger R and especially when more
constraints are added, only a lower estimate of the solution to the maximization
problem remains. Should this estimate lie below experimental data, it would be of
little interest. However, as it resides well above the data, it provides an immediately
useful partial assessment of the effectiveness of these constraints were they to be
included into the full variational problem. Our underlying philosophy is pragmatic:
if the best possible outcome is poor, try something else.

2.2.1. Power integrals, continuity and boundary conditions

Before continuing with the proposed theme, it is useful to review the remaining
general results on determining bounds on the heat flux in Boussinesq convection.

In his first paper on the subject, Howard (1963) also considered the problem

max
u,θ∈H 〈θw〉+ 1 (2.15)

with the set of constraints

H≡
{ ∇ · u = 0, (u, θ)|z=0,1 = (0, 0), ū = θ̄ = U = 0〈|u|2〉

t
= 0,

〈
θ2
〉
t

= 0,

}
.

He solved this problem for large R under the additional stipulation that it consisted
of a single horizontal wavenumber, α. His single-α result, which behaves like

N1 ∼ (R/248)3/8, R →∞,
was discovered by Busse (1969) to be a correct representation of the solution to (2.15)
only when R 6 32 000. Busse’s work suggests that many bifurcations occur rather
quickly after R = 32 000, each associated with an optimal field having an additional
horizontal wavenumber. Busse deduced that

N∞ ∼ (R/1035)1/2, R →∞,
which is an improvement over the bound (2.1) though still considerably conservative
at experimental values of R.

Busse’s successive boundary layers do not separate indefinitely but instead ap-
proach a fixed ratio (1/4), a result not obviously self-consistent with the assumed
approximations. However, the numerical calculations of Straus (1976a, b), and the
theoretical work of Chan (1971) both lend support to Busse’s suggestion of a bifur-
cation structure in wavenumber. (And Chan’s modified problem, in which he takes
σ = ∞ and incorporates the resulting Stokes constraint, yields asymptotic multi-α
type solutions directly.)

The most compelling study with reference to the problem of stress-free boundaries
is the recent one by Vitanov & Busse (1997), which uses a direct Galerkin optimization
with one-, two-, and three-wavenumber solutions. Interestingly, the authors’ empirical
results unambiguously support asymptotic power law scaling of the wavenumber. A
similar conclusion on the optimized variational parameters is reported in Nicodemus,
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Grossmann & Holthaus (1998) for the essentially similar problem of turbulent shear
flow, but approached by means of the more recent background flow method of
Doering & Constantin (1996).

At any rate, while the following ‘negative’ results might be seen to be yet more
negative by utilizing Busse’s findings, we have elected to present conclusions that do
not hinge on the strict validity of Busse’s (or any other’s) multiple boundary-layer
approximation, nor on any presumed existence (or non-existence) of a mean flow U .

2.2.2. Including other moments

Here it is demonstrated that the solution of maximum heat flux subject to the
constraints 〈

θ2
〉
t

= 0,
〈|u2|〉

t
= 0,

(θ, u) = (0, 0) at z = 0, 1,

θ̄ = 0, ū = 0,

∇ · u = 0,

 (2.16)

and

〈θn〉t = 0 (∀ n), (2.17)

〈ωm〉t = 0 (m odd), (2.18)

〈ωmθn〉t = 0 (m+ n odd), (2.19)(
n∏
j=1

Lj(θ)

)
t

= 0 (n even and Lj arbitrary), (2.20)

cannot, at any R, lie below Howard’s single-α, Nu = N1 curve, provided for review
in figure 1. (In fact, in the light of Busse’s work, N1 continues to be the exact bound
for R 6 32 000.) As usual ω = ∇ × u is the vorticity and the Lj are arbitrary linear
spatial differential operators. For example, specific members of the class (2.20) whose
time derivatives are set to zero are

θ2, θ4, θ3θzz,

|∇θ|2, (θ4∇2θxz)∇× k̂θ, |∇3θ|100.

The proof of this claim is quite simple – a specific Howard single-α field having an
associated heat transport N1 is shown to satisfy all of the constraints (2.16)–(2.20).
The remainder of this section is devoted to demonstrating this fact.

Particular trial field (TF)
The Euler–Lagrange equations associated with just the constraints (2.16) and the
restriction U = 0 are the simple modification of (2.11),

∇ · u = 0, (2.21a)

wT ′ − ∇2θ = 0, (2.21b)

θT ′k̂ − 〈|∇θ|2〉∇2u/(R 〈θw〉) + ∇p = 0, (2.21c)

where p(x) is the Lagrange multiplier associated with the divergence-free condition
and, as always, T ′ = θw − 〈θw〉 − 1. Operating on the third of these equations

with k̂ · ∇× yields Laplace’s equation with zero boundary conditions for the normal
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vorticity η = k̂ · ω. It follows that solutions to (2.21) are purely poloidal. Still, by
depending only on the combined wavenumber α2, Howard’s solution to (2.21) is really
an entire class of solutions. For present purposes, the two-dimensional (flat), even
(about z = 1/2) member of the class

w = ŵ(z; α)
√

2 cos (αx), θ = θ̂(z, α)
√

2 cos (αx), ∂y = v = U = 0, (2.22)

is singled out. Insertion of (2.22) into (2.21), along with the optimal choice of α(R),
produces curve N1 of figure 1. With R as a parameter, this constitutes our trial field.
As shown below, this particular trial field (call it TF) satisfies all of the constraints
(2.16)–(2.20).

TF satisfies the constraints
Naturally TF satisfies the original constraints (2.16). The θ-moments (2.17),

0

set

= 〈θn〉t
= −〈∇ · (θnu)〉︸ ︷︷ ︸

I

+
〈
nθn−1

[∇2θ − wT ′]〉︸ ︷︷ ︸
II

+
〈
nθn−1T ′′

〉
︸ ︷︷ ︸

III

are also satisfied by TF:

term I vanishes by the divergence theorem and boundary conditions;
term II vanishes by (2.21);
term III vanishes by symmetry in the z-direction.

Having only a single component of vorticity, ω = γ̂, considerable simplification
occurs when the TF is substituted into the ω-moments (2.18),

0

set

= 〈ωm〉t = 〈(γ̂)m〉t

=

−〈∇ · (γmu)〉︸ ︷︷ ︸
I

+
〈
mγm−1

[∇2γ − Rθx]〉︸ ︷︷ ︸
II

 (̂)m.

This equation is satisfied provided m is odd:

term I vanishes by divergence the theorem and boundary conditions;
term II vanishes when m is odd by orthogonality in x.

Similarly, manipulations on the mixed moments (2.19) yield (within a factor of ̂)

0

set

= 〈θnωm〉t = 〈θnγm〉t
= m

〈
θnγm−1γt

〉
+ n

〈
θn−1γmθt

〉
= −〈∇ · (θnγmu)〉︸ ︷︷ ︸

I

+
〈
nθn−1γm(∇2θ − wT ′)〉︸ ︷︷ ︸

II

+
〈
mθnγm−1(∇2γ − Rθx)〉︸ ︷︷ ︸

III

+
〈
mθn−1γmT ′′

〉︸ ︷︷ ︸
IV

.
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TF also satisfies these constraints, provided m+ n is odd:

term I vanishes by the divergence theorem and boundary conditions;
term II vanishes by (2.21);
term III vanishes when n+ m is odd by orthogonality in x;
term IV vanishes by symmetry in the z-direction.

Lastly, the trial fields TF do indeed satisfy the remaining z-constraints (2.20),

0

set

=
∂

∂t

n∏
j=1

Lj(θ)

=
∑
j

Lj(θt)
∏
k 6=j

Lk(θ)

=
∑
j

Lj(∇2θ − wT ′)∏
k 6=j

Lk(θ)︸ ︷︷ ︸
I

+
∑
j

Lj(T ′′ − u · ∇θ)
∏
k 6=j

Lk(θ)︸ ︷︷ ︸
II

and

term I vanishes by (2.21);
term II vanishes when n is even by orthogonality in x.

To recapitulate, it has been demonstrated that any bound on the heat transport,
derived subject only to the constraints (2.16)–(2.20), must, at all R, reside above the
curve N1 produced in figure 1 for review. This curve, lying well above the experimental
measurements, proves that different and/or more constraints must be incorporated
into the theory if bounds approaching the data are to result.

2.2.3. Including more moments

Continuing within the theme of the previous section, even more moments of the
strongest variety (z-constraints) are considered here as additional constraints within
the variational theory. Specifically, extensions of the θ-moments (2.20) are introduced
which involve the vorticity. With the principal immediate goal being an assessment
of potential, another ‘negative’ result is deduced.

It is demonstrated that the solution of maximum heat flux subject to the
constraints 〈

θ2
〉
t

= 0,
〈|u2|〉

t
= 0,

(θ, u) = (0, 0) at z = 0, 1,

θ̄ = 0, ū = 0,

∇ · u = 0,


(2.23)
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Figure 2. Least possible upper bound, NQ, based on the constraints (2.23)–(2.26) and the measured
experimental data. N1

Q, (low R) present single-α calculations; N2
Q, (med R) Chan’s single-α result;

N3
Q, (high R) Chan’s two-α result; Nexpt, various experimental data.

and

〈θn〉t = 0 (∀ n),
〈ωm〉t = 0 (∀ m),

〈ωmθn〉t = 0 (m+ n odd),(
n∏
j=1

Lj(θ)

)
t

= 0 (n even and Lj arbitrary),


(2.24)

and

∂

∂t

(
m∏
j=1

Lj(ω)

)
= 0(m even), (2.25)

∂

∂t

(
m∏
j=1

n∏
i=1

L1,j(ω)L2,i(θ)

)
= 0(m+ n even), (2.26)

must lie above the curve NQ given in figure 2. As before, the L represent arbitrary
spatial linear differential operators.

The technique used to prove this is analogous to that employed earlier – a trial field
(TF) is produced that satisfies all of the constraints and has heat flux NQ. Motivation
for the choice of trial function comes from inspection of the two-dimensional version
of the simplest vorticity z-moment,

1
2
(γ2)t + 1

2
(γ2w)z = γ

[∇2γ − Rθx].
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With single-α fields in mind, the vanishing of the cubic term suggests setting

∇2γ − Rθx = 0. (2.27)

Trial field via the quasi-linear approximation
The above suggests considering fields defined by

∇ · u = 0,

wT ′ − ∇2θ = 0,

∇p = ∇2u+ Rθk̂,

T ′ = θw − 〈θw〉 − 1, uw = 0,

ū = θ̄ = 0, (u, θ)|z=0,1 = (0, 0).


(2.28)

It should be clear that any single-α solution of the above system, with the necessary
z-symmetry, will (by design) satisfy many of the integral consequences of the full
Boussinesq equations. It is interesting, and relevant to what follows, that other types
of solutions (multi-α) can also satisfy such constraints. Our trial field TF is defined
as the particular solution of (2.28) having largest heat flux.

Fortunately, equations (2.28) are not new to the literature. They are the steady
versions of the Herring (1963, 1964) quasi-linear approximation of the Boussinesq
equations. To obtain the quasi-linear approximation, one simply drops fluctuating
self-interaction terms like{

u · ∇u− u · ∇u} and
{
u · ∇θ − u · ∇θ} . (2.29)

In fact, as a demonstration of the effectiveness of the multiple boundary layer tech-
niques devised by Busse (1969) and extended by Chan (1971), Chan also considered
exactly system (2.28) and solved asymptotically for those fields having maximum heat
flux! Chan’s solution has the form

w =
∑

wn(z)φn(x, y), ∇2
Hφn = −α2

nφn,

θ =
∑

θn(z)φn(x, y), φnφm = δnm,

where u and v follow from continuity and the vanishing of normal vorticity, i.e.

∇2
Hu = −wxz, ∇2

Hv = −wyz. (2.30)

A most remarkable property of his optimal fields is that successive wavenumbers
separate asymptotically, i.e.

αn

αn+1

→ 0 as R →∞. (2.31)

The number of terms comprising the optimal solution is an increasing function of R.
The optimal solution is single-α when R 6 1010 and carries a heat flux

NQ ∼ 0.148(logR)1/5 R3/10.

Near R = 1010, Chan finds that a two-α field becomes optimal, which yields an
increased flux of

NQ ∼ 0.070(logR)11/50 R33/100,

and this remains optimal until R ≈ 1077. Similarly, other bifurcations occur and the
limiting form is

NQ ∼ 0.152R1/3 R →∞.
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TF satisfies the constraints
Because the successive wavenumbers which characterize TF in Chan’s expansion are
well separated, odd products involving the multi-α forms of TF vanish under the
horizontal average. This point is instrumental in extending the ‘negative’ results into
the multi-α regime.

Going through all of the constraints, one by one, and showing that they are satisfied
by TF seems unnecessarily repetitious. As a representative example, consider only
(2.25):

0

set

=
∂

∂t

m∏
j=1

Lj(ω)

=
∑
j

Lj(ωt)
∏
k 6=j

Lk(ω)

= σ
∑
j

Lj(∇2ω − Rk̂ × ∇θ)
∏
k 6=j

Lk(ω)︸ ︷︷ ︸
I

−∑
j

Lj(∇× [u · ∇u])∏
k 6=j

Lk(ω)︸ ︷︷ ︸
II

+
∑
j

Lj(∇× [σU zz −U · ∇u− wU z])
∏
k 6=j

Lk(ω)︸ ︷︷ ︸
III

which is satisfied by the outlined trial field TF since

term I vanishes by (2.28);
term II vanishes when m is even by orthogonality in the horizontal;
term III vanishes since U = 0 by (2.28).

Similar considerations show that (2.23)–(2.26) are also satisfied by TF, and this verifies
the claims of this section.

Numerical treatment for moderate R
In the single-α regime, numerical calculations of TF are presented and provide
accurate values of NQ in the low-to-moderate R regime. These results are presented
in figure 2 along with Chan’s asymptotic estimates. Again, the problem of maximum
heat transport subject to the set of constraints (2.23)–(2.26) must lie above NQ.

2.3. Bounds at infinite Prandtl number

Chan solved an upper-bound problem constrained by the σ = ∞ limit of the momen-
tum equation, the thermal power integral, the continuity equation and the boundary
conditions (Chan 1971). In this section, other classes of moments are shown to be com-
pletely ineffective in reducing Chan’s bound when included as additional constraints
into the variational theory.

At σ = ∞, the momentum equation reduces to steady, linear, Stokes flow, which
form can be directly incorporated into the variational theory for statistically steady
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By sequentially including The solution to the upper bound
the following constraints: problem must lie above:〈

θ2
〉
t

= 0,
〈|u2|〉

t
= 0

θ = w = 0 at z = 0, 1 NH ∼ (3R/64)1/2 R →∞

θ̄ = 0, ū = 0

〈θm〉t = 0; m = 1, 2, . . . NH ∼ (3R/64)1/2 R →∞
(θm)t = 0; m even

∇ · u = 0

〈ωm〉t = 0; m odd

〈ωmθn〉t = 0; m+ n odd N1 ∼ (R/248)3/8 R →∞(
m∏
j=1

Lj(θ)

)
t

= 0; m even

(
m∏
j=1

Lj(ω)

)
t

= 0; m even

(
m∏
j=1

n∏
i=1

L1,j(ω)L2,i(θ)

)
t

= 0; m+ n even

NQ ∼ 0.15R1/3 R →∞

Stokes (σ = ∞) NQ ∼ 0.15R1/3 R →∞

Change from rigid to free BCs NC ∼ 0.32R1/3 R →∞

Table 1. Summary of major results concerning adding constraints on the upper bound theory
for heat transport are presented in this table. The L represent arbitrary linear spatial differential
operators and ω = ∇× u.

fluid motions. Chan (1971) discovered that maximizing Nu subject to the set

∇ · u = 0,〈
θ(wT ′ − ∇2θ)

〉
= 0,

∇p = ∇2u+ Rθk̂,

T ′ = θw − 〈θw〉 − 1, uw = 0,

ū = θ̄ = 0, (u, θ)|z=0,1 = (0, 0),


(2.32)

gives the bound NQ, i.e. the same bound, to leading order, as obtained by maximizing
from the quasi-linear set (2.28). This interesting point, as well as the observation that
the quasi-linear set is a subset of Chan’s set, are the essential ingredients needed to
prove the claims of this section.

Consider an enriched Chan problem in which the set (2.32) is supplemented with
other statistically steady constraints based on the remaining thermal evolution equa-
tion

θt + u · ∇θ +U · ∇θ + wT ′ = T ′′ + ∇2θ.
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A principal class of such moments is

〈θn〉t = 0 (∀ n),(
n∏
j=1

Lj(θ)

)
t

= 0 (n even and Lj arbitrary),

 (2.33)

and, while not obviously satisfied by Chan’s original optimal fields, they are in fact
satisfied by the optimal fields of the quasi-linear problem based on the constraints
(2.28). Therefore, the optimal quasi-linear solutions remain admissible as trial fields
for the appended Chan problem. It follows immediately that the bound for the
appended Chan problem remains unchanged at NQ.

3. Constraints – perturbation theory for slip
In this section some of the simplest z-constraints broached in the preceding section

are explored in the regime accessible to finite-amplitude theory (Malkus & Veronis
1958). In addition to this implicit restriction on R − R0, for analytic simplicity we
adopt stress-free (slip) boundaries for their natural implementation in trigonometric
functions in preference to the no-slip case which, even for the linear problem, has a
solution expressed in terms of non-elementary functions. Our hope is that constraints
found useful under these simplifying assumptions have greater general application.
Also, by considering the Euler–Lagrange equations, we find the explicit rôle of a
given set of constraints in determining the symmetry of the solution. We argue that
symmetries are one fairly general means to determine in advance a minimal set of
constraints that lead to a potent upper bound formulation.

Our approach is mainly to deploy the familiar tools of perturbation theory. While
this choice limits our investigation to a small neighbourhood of the initial point of
bifurcation (out to perhaps ε = 1/3 for quantitative accuracy), it has the virtue of a
reasonable degree of rigour. The considerable complexity of the governing equations,
to say nothing of the resulting solutions, is such that any immediate attempt to
exploit an asymptotic line of reasoning for R → ∞ seems premature in the light of
our discovery that arbitrarily constructed sets of constraints may not be ‘congruent’,
a topic on which we shall say more shortly. Similarly, before one embarks on an
ambitious numerical program of discovery, such issues merit study because of the
likelihood otherwise of mistaking each parametric occurrence of small least-square
error as a new ‘solution’. Linking, as we do here, the meticulous expansion of the
Euler–Lagrange solutions to the classic roll solution that sets in at R = 27π4/4, one
knows exactly how to interpret the results. These are only a precursor, of course,
to the far more interesting issue of behaviour at large R, but they establish the
groundwork needed. We conclude with just a brief numerical foray for the simplest
possible extension of the Howard–Busse study as a foretaste of more numerical results
to come in a future communication.

Here we summarize in table 2 all the constraints that we shall consider in application
to a perturbation expansion of convective solutions. In all cases we impose ∇ · u =
θ̄ = ū = 0. The latter pair account for the overbars appearing below in (3.1). An issue
that certainly requires more scrutiny than we are prepared to give here is proof that
solutions of upper-bound problems discussed can, as we assume from here on, be
taken in the form of two-dimensional rolls. Near the initial bifurcation this does not
seem likely to be a problem but, for larger R, we have no way to exclude the possibility
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Constraint Lagrange Multiplier

(1) 〈|u|2〉t = 0 µa[R〈θw〉 − 〈|∇u|2〉]
(2) 〈θ2〉t = 0 µb[〈θ∇2θ〉 − 〈θwTz〉]
(3) θ2

t = 0 〈µc(z){ 1
2
(θ2w)z + θwTz − θ∇2θ}〉

(4) θ3
t = 0 〈µd(z){ 1

3
(θ3w)z + θ2wTz − θ2∇2θ − θ2Tzz}〉

(5) γ2
t = 0 〈µe(z){(γ2w)z/(2σ) + Rγθx − γ∇2γ}〉

(6) 〈γ2〉t = 0 µ̂e[〈γθx〉 − 〈γ∇2γ〉]
(7) γ3

t = 0 〈µf(z){(γ3w)z/(3σ) + Rγ2θx − γ2 ∇2γ}〉
(8) Exact vorticity 〈µg(x, z)(Rθx − ∇2γ)〉

Table 2.

of bifurcation to a more richly structured upper-bounding flow. Whether and when
this may happen is certainly a function of the set of constraints employed. For
certain of the z-constraints the solutions may remain two-dimensional to arbitrarily
high R. For others, and especially at small σ, fully three-dimensional solutions may
emerge.

Application of one or more of these leads to Euler–Lagrange equations of the
general form

−Φθx + G1 −G1 = 0, (3.1a)

Φw + G2 −G2 = 0, (3.1b)

along with the corresponding constraints from table 2. Here

Φ = 1 + µaR − µb(1 + 2Tz) + µc(z)θw − 〈µc(z)θw〉+ µd(z)θ2w − 〈µd(z)θ2w〉+ (µdθ2)z

(3.2)

(incorporating Lagrange multipliers as appropriate) and contributions to the other
factors are given by

G1 =



2µa∇2γ

−−
µ′c(θ2)x/2− µcTzθx

1
3
µ′d(θ3)x − µdTz(θ2)x

[µ′eγγx + ∇2(µ′eγw)]/σ − R∇2(µeθx) + ∇2(µe∇2γ + ∇2(µeγ))

µ̂e(2∇4γ − R∇2θx)[
µ′fγ2γx + ∇2(µ′fγ2w)

]
/σ − 2R∇2(µfγθx) + ∇2(2µfγ∇2γ + ∇2(µfγ

2))

∇4µg(x, z)

(3.3)
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and

G2 =



−−
2µb∇2θ

−µ′cθw + µcTzw − ∇2(µcθ)− µc∇2θ

−µ′dθ2w + 2µdTzθw − ∇2(µdθ
2)− 2µdθ∇2θ − 2µdθTzz

−Rµe(z)γx
−Rµ̂eγx

−Rµf(z)(γ2)x

−R∂µg/∂x.

(3.4)

(The explicit coordinate dependence of the Lagrange multipliers is shown only for
those entries where it is not obvious from the context.)

The Euler–Lagrange equations do not have solutions for arbitrary µa,b,c,.... Rather
these must satisfy certain consistency relations in terms of the physical variables. The
complicated forms do not usually permit one to isolate simple expressions for each µ
hence in all but a few cases these auxiliary variables must typically be carried through
as a part of the solution procedure. Below we present suitable forms for perturbation
expansion about the initial bifurcation:

µa,b =
∑
k=−1

µ
(k)
a,bε

2k, (3.5a)

µc,e(z) =
∑
k=−1

k+1∑
j=0

µ(k,j)
c,e ε

2k cos (2jπz), (3.5b)

µd(z) =
∑
k=0

k+2∑
j=1

µ
(k,j)
d ε2k cos ((2j − 1)πz)/ sin (πz). (3.5c)

The subordinate multiplier, µ̂e, is just the restriction of the general sum above for µe(z)
to j = 0. In lieu of expanding µg , it is easier to eliminate it from the Euler–Lagrange
equations by differentiation and substitution, leaving a single higher-order equation
in θ.

The constraint of incompressibility is enforced by introduction of a stream function,
ψ, where u = −∇ × (ψ(x, z) ̂ ). Finally, we give the most general form we shall
require in the expansion of ψ and θ, for which it is useful to note that the steady
Boussinesq problem admits the two-dimensional symmetry (x→ −x, z → −z, ψ → ψ,
θ → −θ):

ψ = εψ
(1)
1,1 sin (kx) sin (πz) +

∞∑
q=1

q∑
m=1

q+1∑
n=1

ε2q+2ψ(2q+2)
m,n sin (2mkx) sin (2nπz),

+

∞∑
q=1

q∑
m=1

q+1∑
n=1

ε2q+1ψ(2q+1)
m,n sin [(2m− 1)kx] sin [(2n− 1)πz], (3.6a)
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θ = εθ
(1)
1,1 cos (kx) sin (πz) +

∞∑
q=1

q∑
m=1

q+1∑
n=1

ε2q+2θ(2q+2)
m,n cos (2mkx) sin (2nπz)

+

∞∑
q=1

q∑
m=1

q+1∑
n=1

ε2q+1θ(2q+1)
m,n cos [(2m− 1)kx] sin [(2n− 1)πz]. (3.6b)

(Results of interest will require that we carry out the expansion of ψ and θ to O(ε7).)
This is, of course, the form for the canonical roll solution, as first elucidated in
the influential and still commonly cited Malkus & Veronis (1958). Without loss of
generality, ψ(q)

1,1 can be set to zero for q > 1 (this amounts to a definition of ε).

A minor qualification: the need to carry out expansions to O(ε7) to understand the
interaction among constraints has prompted us to fix our attention on a periodic box
of length L = 2

√
2 (i.e. αc = kc/π = 1/

√
2), the value at the first onset of convection.

Over a limited range of R − R0, it is reasonable that the extremum is realized on
the same length scale. At fixed α (or L), each set of constraints yields a bound for
Nu in the form of a power series,

∑
cjr

j , whose coefficients we present shortly. If we
allowed for variation in α as well, the series would assume the more general form∑
dj,kr

j(α− αc)k , representing a surface instead of simply a slice through that surface.
Though all the dj,k are determinate, the algebra required for their determination when
expansions are carried to O(ε7) is forbidding even with the aid of Maple. To illustrate
what we mean by ‘forbidding’, note that a typical result (here carried only to O(ε5) in
(ψ, θ) for the shortly to be discussed Case I) is

R/R0 = 1 +
α2ε2

α2 + 1
− ε4(α4 + 8α2 + 23)α4

2(3α4 + 30α2 + 91)(α2 + 1)
, (3.7a)

Nu < 1 + 2
α2ε2

α2 + 1
− 2

ε4α4

(α2 + 1)2

+
α6(α2 + 5)(α10 + 49α8 + 698α6 + 4882α4 + 18101α2 + 30253)ε6

8(α2 + 1)3(3α4 + 30α2 + 91)2
, (3.7b)

where α = k/π.
Finally, we make a few remarks on the rôle of the Prandtl number. As the reader

can see in the Euler–Lagrange equations for the Howard–Busse problem, σ does not
enter in the solution and thus the results remain valid at all σ without restriction. The
same is true for any combination of constraints (1–4) and (6) chosen from table 2.
In both the fifth constraint, γ2

t = 0, and the seventh constraint, γ3
t = 0, σ appears

explicitly and this will be reflected in the solutions to the Euler–Lagrange equations.
The last constraint is applicable only to the case of infinite Prandtl number. In first
comparing various results below we confine ourselves to infinite Prandtl number. As
with wavenumber, our choice here too is partly a concern for economy and clarity,
but in addition there are some lacunae for certain expansions at finite σ which are
best reserved for § 3.1 for separate discussion.

Table 3 shows the solution for Nu(r) for ten model variational problems (where
r = R/R0 − 1). The eleventh line is an exact solution of the Boussinesq problem. We
have reduced all the exact rational expressions appearing as coefficients to decimal
form to facilitate quantitative comparison.

The results above are in one respect misleading: the coincidence of coefficients in
Nu(r) masks that expansion coefficients of ψ and θ can differ qualitatively. Table 4
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Case Constraints Nu(r)

I∗ 〈|u|2〉t = 〈θ2〉t = 0 1 + 2r − 1.617096019r2 + 1.635930447r3

II∗ 〈|u|2〉t = θ2
t = 0 1 + 2r − 1.617096019r2 + 1.635930447r3

III∗ 〈|u|2〉t = 〈θ2〉t = θ3
t = 0 1 + 2r − 1.617096019r2 + 1.584452076r3

IV 〈|u|2〉t = 〈θ2〉t = γ2
t = 0 1 + 2r − 1.666957515r2 + 1.669589876r3

IV(a)∗ 〈|u|2〉t = 〈θ2〉t = 〈γ2〉t = 0 1 + 2r − 1.666957515r2 + 1.669589876r3

IV(b)∗∗ 〈θ2〉t = γ2
t = 0 1 + 2r − 1.666957515r2 + 1.669589876r3

V 〈θ2〉t = Rθx − ∇2γ = 0 1 + 2r − 1.666957515r2 + 1.669589876r3

VI∗∗ 〈θ2〉t = θ3
t = γ2

t = 0 1 + 2r − 1.666957515r2 + 1.599629855r3

VII 〈|u|2〉t = 〈θ2〉t = θ3
t = γ2

t = 0 1 + 2r − 1.666957515r2 + 1.597087539r3

VIII 〈θ2〉t = θ3
t = Rθx − ∇2γ = 0 1 + 2r − 1.666957515r2 + 1.592612917r3

IX∗∗ θ2
t = γ2

t = 0 1 + 2r − 1.667154567r2 + 1.669845200r3

X∗∗ θ2
t = θ3

t = γ2
t = 0 1 + 2r − 1.667154567r2 + 1.637365763r3

XI∗∗ Malkus–Veronis 1 + 2r − 1.667154567r2 + 1.592322379r3

Table 3. Cases marked with a single asterisk apply for all σ as they stand. The double asterisk
indicates results that have supplementary σ-dependent terms (listed in table 5). All other cases apply
only at infinite Prandtl number.

m I II III IV IV(a) IV(b) V VI VII VIII IX X XI

1 • • • • • • • • • • • • •
2 � ◦ • • • • • •
3 • ◦ • • • • • •
4 •
5 •

Table 4. The harmonic content (mth multiple of kcx) present for each perturbation expansion to
O(ε7). Open circles denote terms that are absent for σ →∞, the diamond indicates terms occurring
in θ only.

partly clarifies this by indicating which x-harmonics are non-zero in each solution
set. (The last column is the exact Malkus–Veronis reference solution.) Further detail
remains hidden: that two solutions share the same pattern of harmonics does not
indicate identity in the values of the coefficients. But it would consume many pages to
exhibit the exact expansion coefficients even if limited to fixed α and infinite Prandtl
number, and to little purpose.

One can see by comparison with the exact solution which degrees of freedom remain
yet unexploited by any particular set of constraints. That the relevant coefficients in
the upper bounding ψ or θ go unused points to the pertinence of other z-dependent
constraints as an agent needed in producing any further qualitative, as opposed to
merely quantitative, reductions.

Cases I and XI provide bounds for the remainder of results: Case I the result of
applying only the power integrals – the Howard–Busse model – and Case XI the
exact Malkus–Veronis solution.
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Case II is included to verify the result in § 2 that, perhaps counter-intuitively, the
θ2
t correction taken in conjunction with only the power integrals is nugatory. Note

that one power integral is in fact redundant, so the proper variational formulation
omits it.

Case III marks the first improvement to the upper bound. Drawing on the argu-
ments of § 2, we use the the cubic z-constraint on θ to augment the power integrals.
Notice that the r2 coefficient is unaffected. That the first correction is O(r3) can be
anticipated from the Euler–Lagrange equations but in the interest of brevity we omit
the argument. Rather, we draw the reader’s attention to a more critical point: the
contribution to G1 manifestly does not permit solutions of a single wavenumber in x.
This seems at first glance also to be true of Case II, but there is a subtle difference:
notice that the cubic moment, 1

2
(θ2w)z , in the associated Lagrange multiplier vanishes

identically for a Howard–Busse single-wavenumber solution. Thus there is no need
for an associated constraint and, for Case II, µc is not a function of z. In contrast,
the single-wavenumber solution gives a non-zero contribution to 1

3
(θ3w)z arising from

θ3
t , hence is not admitted as a possible solution. The multiplier µd thus always has

a non-trivial z-dependence and the Euler–Lagrange equations not only preclude a
single-wavenumber solution, they also break the two-fold symmetry of Cases I and
II. Once the θ3

t constraint is introduced, the associated variational field θ cannot
have any higher symmetry than that of the original equations, that is, the Boussinesq
symmetry. As one can readily imagine, it takes the application of a z-constraint
derived from the momentum equation to comparably restrict the symmetry of the
stream function. In purely quantitative terms, the addition of the θ3

t constraint alone
could be considered slight since it enters only at the r3 coefficient. But for values
of R well above R0 (but not necessarily in the asymptotic regime where shear flow
instabilities begin to dominate the scaling) there is good reason to believe that the
θ-restriction to the Boussinesq symmetry will exert an influence at leading order (cf.
§ 4) that qualitatively alters the simpler Howard–Busse bound.

Cases IV, IV(a), IV(b) and V have increasingly tight constraints on the velocity
field, with V incorporating the Stokes equation which, for σ →∞, gives an exact, not
merely integral, representation for the velocity field in the variational theory. Notice
that entries in table 3, however, are identical to O(r3), that is to say, that Nu(r) is
not necessarily a very sensitive indicator near the point of bifurcation given that the
detailed forms of ψ and θ are distinct in the four cases. Oddly enough, as we shall see
later, this insensitivity in Nu persists to large R, with Cases IV(a) and V (the Chan
problem) giving essentially similar results. Case IV, which is more tightly constrained
than IV(a) and less than V, must therefore exhibit a similar convergence.

Cases VI and VII differ only in that the former lacks one power integral. A
fuller discussion of the consequences is deferred to the next section. The immediate
consequence is a slight change in the r3 coefficient. The natural case with which to

compare VI is Case X, which substitutes θ2
t = 0 in place of 〈θ2〉t = 0. Notice that the

quadratic coefficient then matches the Malkus–Veronis result exactly, but the cubic
coefficient is thrown considerably off. Either Case VI or Case X is a natural pivot
for any numerical investigation having as its object the impact of z-constraints. Case
III is also possible for that purpose, but notice how improvements at O(r2) are most
strongly affected by the simple volume constraint on the enstrophy. In the instance
of heat transport in a porous medium satisfying Darcy’s law, Doering & Constantin
(1998) find that the enstrophy constraint plays a critical rôle for two-dimensional
convection at arbitrary Darcy–Prandtl number; with its inclusion, the earlier single-



244 G. R. Ierley and R. A. Worthing

wavenumber result of Busse & Joseph (1972) can be shown to be a rigorous (if not
optimal) upper bound for all R, not just R < 113, the limit of validity when only the
energy integrals are used.

The purpose in presenting Case VIII is that all of the error is attributable to defects
in θ-constraints since the velocity field is exactly represented by the Stokes solution.
Compare Case V, the Chan problem: all other things being held fixed, the constraint

that θ3
t = 0 tightens the r3 coefficient. But it does so in a more complicated way – the

single-α solution is gone, as one can see from table 4.
Case IX and Case I are natural points of comparison: both enforce two quadratic

constraints, but the first solely through volume integrals, the second only via z-
constraints. The price, as with all the cases starting with VI, is structurally more
complicated solutions.

3.1. Congruent constraints

One is free to invoke any mixture of constraints, but it is not always the case that
added constraints actually produce a tighter bound. In some instances, it may be that
the added constraint is already satisfied owing to a (perhaps overlooked) identity.
But a more interesting case is one in which the reason that the added constraint
proves ineffective is that the solution falls outside the class of smooth solutions,
typically through the induction of singularities that affect the constraint but make an
arbitrarily small change in the variational form. The failure of standard perturbation
theory easily to accommodate certain combinations of elements is, we believe, because
the variational solution is non-smooth. The cases here are sufficiently complex that
we are not yet able to prove this assertion. (What we have established in the cases
noted below is the appearance of an inconsistent overdetermined system of algebraic
equations in the perturbation coefficients.) In order, however, that the reader can
at least see how a non-smooth solution can arise, we turn later in this section to a
simpler setting, where a more constructive approach is possible.

In at least one respect, one can anticipate why a mixed bag of constraints might
be problematic. Exact solutions of the p.d.e. satisfy an infinite number of constraints
and, in particular, one can find as many quadratic moments of either equation as
desired, say 〈γ2〉t = 0 but also 〈|∇ψ|2〉t = 0. From the standpoint of perturbation
theory, however, if one imposes two z-constraints of a given order, one in each field
(as in Case IX), a unique expansion follows. Any such an expansion will, in general,
fail to satisfy any other quadratic z-constraints derived from the same differential
equation or indeed any other volume constraints that do not follow as an identity
from the full z-constraints already used. However, the violations, while stemming
from, say, a quadratic constraint, emerge at higher order in ε, for example, Case IX
above with its O(ε8) discrepancy in satisfying 〈|u|2〉t = 0. The remedy is not simply
to add 〈|u|2〉t = 0 as yet another constraint. Rather, further z-constraints of higher
order (cubic and quartic moments, for example) will yield an orderly perturbation
expansion, modify the necessary higher-order coefficients, and thus cure the apparent
various quadratic constraint misfits retroactively. A heuristic suggestion is to use
just one z-constraint of a given order in each field and no volume constraints that
are not otherwise automatically satisfied. Unfortunately, the answer is not quite so
easy to implement, since, as the reader may have noticed, the seventh entry of the

constraint table 2, γ3
t = 0, is nowhere employed in the various cases. Solutions with

the Boussinesq symmetry satisfy this automatically, so the expansion coefficients of µf
turn out to be zero order by order. (Similar remarks apply to γ2j+1

t = 0.) We have not
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Case Constraints σ corrections to r3 term in Nu(r)

IV(b) 〈θ2〉t = γ2
t = 0 0.000369452 σ−2

VI 〈θ2〉t = θ3
t = γ2

t = 0 −0.001860525 σ−1 + 0.000356787 σ−2

IX θ2
t = γ2

t = 0 0.000146879 σ−1 + 0.000388586 σ−2

X θ2
t = θ3

t = γ2
t = 0 −0.001907692 σ−1 + 0.000353656 σ−2

XI Malkus–Veronis −0.011034667 σ−1 + 0.002790460 σ−2

Table 5.

yet discovered an elementary cubic constraint derived from the general form of the

momentum equation which, along with θ3
t = 0, complements Case X and reproduces

the Malkus–Veronis result exactly to O(r3). The various forms that might work all
seem to induce surface terms, at least formally, a complication we have generally tried

to avoid. Evidently it is appropriate to impose θkt = 0 for k = 2, 3, 4, . . . in the search
for successively tighter bounds but a comparable recipe deriving from the momentum
equation is still not clear.

3.1.1. Problematic expansions

The first and most overwhelming impression of the results in table 5 is that the
σ-dependent bounds are terrible. Note that in Case IX, even the sign is wrong
on the first term. (Note that we are assuming that for R sufficiently close to the
bifurcation, it should be possible to approach the Malkus–Veronis solution with a
sufficiently constrained upper bound.) To be sure, the absolute corrections would,
for many common fluids, be so small that one might set this issue aside as a minor
curiosity. The exception, of course, is exploration of the limit of zero Prandtl number,
an upper-bound problem which, in the instance of z-constraints, is of considerable
interest.

For infinite σ, one can pose the problem

〈|u|2〉t = 〈θ2〉t = θ3
t = γ2

t = 0 (3.8)

as indicated by the result for Case VII in table 3. For finite σ, however, the expansion
fails. The only resolution is to discard the first power integral (Case VI). Doing so
gives the following σ-dependent bound:

1 + 2r − 513913

308294
r2

+

(
41386105598591

25872301312368
− 388854312

209002434071
σ−1 +

18269508312

51205596347395
σ−2

)
r3. (3.9)

Notice that the limit of this for σ → ∞ shown in table 3 is a less tight bound on the
r3 coefficient than for Case VII, as one might expect given that a scalar constraint is
lost.

Case IV is similar to VII – it also has a smooth expansion only for σ → ∞. The
restriction to the volume integral of γ2, rather than the z-constraint, Case IV(a), reverts
to a σ-independent constraint as shown in table 2. This, like the original Howard–
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Busse result, is a bound that applies at all σ. To obtain a well-posed formulation with
the z-constraint, again we are forced to drop one power integral. This is recorded as
Case IV(b). Notice in table 4 that the symmetry-breaking terms that result all vanish
in the limit of σ → ∞ and, in contrast with the VI/VII pair above, the expansions
for Nu(r) for IV/IV(b) are then identical.

Interestingly, the appearance of breakdown is not solely an artifact of finite Prandtl
number: already for σ →∞ Case IX in the table does not admit the addition
of 〈|u|2〉t = 0. Thus the selection rule that says when a power integral (or other
constraint) is permitted, when it is incongruent, and when it is simply redundant, is
not elementary. Fortunately, the rule is not hopelessly opaque either: the success or
failure of the perturbation expansion is a useful, if tedious, operational guide. Useful
because the formalism tells one unambiguously that the solution does not lie in the
class of smooth solutions and tedious because, in several instances, the expansion
breaks down only at O(ε7).

3.1.2. Discontinuous vs. smooth solutions: a model problem

The introduction of integral moments having boundary terms, like the vorticity
integral suggested by Malkus & Smith (1989), as constraints into the variational
theory may not lead to tighter bounds. One reason for this is that such constraints
can often be satisfied by local adjustments near or at the boundary, to which effect
the other relevant global quantities are insensitive. As an example, the form of the
boundary term associated with the enstrophy integral

〈|∇× u|2〉
t

= 0 is considered.
In two dimensions (v = ∂y = 0) this boundary component emerges from the term〈
γ∇2γ

〉
where γ = j ·ω = uz−wx is the remaining component of vorticity. Integrating

by parts while observing no-slip boundary conditions gives

uzuzz|z=1
z=0 −

〈
u2
zz

〉
+ other volume terms.

3.1.3. Model

A simple one-dimensional model containing a similar constraint is perhaps instruc-
tive. Consider the minimisation problem

λ = min
u(z)

〈
u2
z

〉
〈u2〉

subject to the boundary conditions u(0) = u(1) = 0. With no other constraints, the
global minimum is, of course, λ = π2 = 9.8696044 . . . with u(z) = sin (πz) being the
optimal form.

The change in λ is now investigated when the problem is modified to include the
additional constraint

〈uzuzzz〉 = uzuzz|10 −
〈
u2
zz

〉
= 0. (3.10)

Clearly (3.10) is not trivially satisfied by the previous extremal. However two pieces
of evidence are provided below suggesting that the minimum λ remains unaltered.

First, numerical solutions are obtained within the space of polynomials of degree
6 N. For different N the values of λ are contained in table 6 and the optimal
polynomials are given in figure 3 along with informative higher derivatives.

From this sequence, it is apparent that the solution remains essentially u(z) =
sin (πz) except near the boundaries where large changes in higher-order derivatives
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N λ

4 9.87996

8 9.87016

12 9.86968

Table 6.
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Figure 3. The solutions of minimum
〈
u2
z

〉
/
〈
u2
〉

subject to u(0) = u(1) = 0 and 〈uzuzzz〉 = 0 are
computed using polynomials of degree 6 N, where N = 4, 8 and 12, respectively.

occur. These deviations seem designed to satisfy uzuzz|10−
〈
u2
zz

〉
= 0 without incurring

significant alterations of the global integrals contained in the calculation of λ.

This same idea is captured by the trial field

uzz(z) =

{ −A, 0 < z < ε
−π2 sin (πz), ε < z < 1,

in which a jump is allowed in the curvature at z = ε. Integrating twice gives

u(z) =

{ −Az2/2 + Bz + C, 0 < z < ε
sin (πz), ε < z < 1,
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and the coefficients A, B and C are found to be

A =
π3
(
1− ε+ (2π)−1 sin (2πε)

)
2 cos (πε)

∼ π3/2 + π5ε2/4 + O(ε3),

B = εA+ π cos (πε) ∼ π + π3ε/2− π3ε2/2 + O(ε3),

C = Aε2/2− Bε+ sin (πε) ∼ −π3ε2/4 + O(ε3),

by continuity of u and uz at z = ε and forcing directly the constraint uzuzz|10−
〈
u2
zz

〉
= 0.

In this limited formulation, u(0) = C = O(ε2) and so that particular boundary
condition is formally only satisfied in the limit ε → 0. The value of the functional
provided by this trial field is 〈

u2
z

〉
〈u2〉 ∼ π

2 + π4ε2 + O(ε3)

and so the earlier value of λ = π2, as well as all other conditions, are approached by
this trial set as ε→ 0.

3.2. More on
〈
γ2
〉
t

= 0

To give a formulation closer to the problems considered in § 3, we now turn to Case
IV(a), the addition, that is, of

〈
γ2
〉
t

= 0, into Howard’s original problem, except that
here we impose no-slip conditions. In § 1 it was shown that heat flux of the no-slip
solution must lie between the curves Nb of figure 1 and NQ in figure 3. Interestingly,
the variational problem now leads to the emergence of non-smooth solutions.

To recapitulate, the problem is to maximize 〈θw〉 + 1 subject to〈
γ2
〉− R 〈θw〉 = 0, (3.11)〈

θ∇2θ
〉− 〈θwT ′〉 = 0, (3.12)〈

γ∇2γ
〉− R 〈γθx〉 = 0, (3.13)

where T ′ ≡ θw − 〈θw〉 − 1, γ ≡ uz − wx, and ux + wz = 0. In this formulation the
independent fields become the streamfunction ψ(x, z), where u = ψz and w = −ψx,
and the temperature fluctuations θ(x, z).

Rather than deriving the differential Euler–Lagrange equations, the approach taken
here is to consider ψ and θ of the form

ψ(x, y) = φ(x)

[
z(1− z)

K∑
k=0

akTk(2z − 1)

]
,

θ(x, y) = φx(x)

[
z(1− z)

K∑
k=0

bkTk(2z − 1)

]
where φxx = −α2φ, φ2

x = 1, and the {Tk} are Chebyshev polynomials. Note that the
w = 0 and θ = 0 boundary conditions are enforced by the pre-factor of z(z−1). Other
boundary conditions, for example ψz(0, x) = 0 (or ψzz(0, x) = 0 for slip), are included
as additional constraints – on the same footing as the three integral constraints. The
‘equivalent’ algebraic constrained optimization problem for the set {ak, bk, α} is then
easily addressed using Lagrange multipliers and Newton’s method. While the optimal
solution at larger R is likely to assume a multi-α form, for this exploration we consider
only the single-α solution.
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Figure 4. Defining γ = γ̂(z)φ(x) and L(γ̂) = (∂2
z − α2)γ̂, these panels illustrate: (a) L(γ̂) without

the enstrophy constraint (3.13) applied. (b) L(γ̂) with the enstrophy constraint (3.13) applied at a
resolution of K = 34 (solid) along with Howard’s original (dashed). (c) A close-up near the boundary
of L(γ̂) for the problem including the enstrophy constraint. Different solid curves correspond to
different values of K , the degree of the trial space. Note that these seem to approach a non-smooth
function as K increases. (d) As K increases we see that the Nusselt number of this problem
approaches that of the problem not constrained by the enstrophy integral. (Note, all computations
have R = 104.)

The numerical solution is found to depend on the rank K of the trial space in
such a way that solutions of limited differentiability are expected in the limit of
large K . Numerically we find that relevant integral properties of these fields, like
N, approach the values obtained by the (smooth) optimal solutions obtained in the
absence of the enstrophy constraint (3.13), as illustrated in figure 4. The discontinuous
higher derivatives near the boundaries allow the enstrophy integral to be satisfied
while essentially preserving all moments composed of lower-order derivatives. This
behaviour can be traced back to the boundary term

γγz|z=1
z=0

hidden in (3.13). As this term is not known a priori, it provides the requisite freedom
to make adjustments to higher derivatives near or at the boundaries while not
significantly altering the balance of the power integrals. While perhaps a physically
unsatisfying means of satisfying the added constraint, from a mathematical point of
view the operative point is that the bound does remain unchanged.

Subject to a slip boundary condition, Cases IV and VII, which suffer a breakdown
in the perturbation analysis at finite σ, do not have boundary terms. They do, however,
have one or more z-constraints, which we suggest can act in a similar way. Numerical
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investigation should furnish the needed evidence of this. We hope to report such
results in the near future.

4. Conclusions
As Spiegel (1971) noted, steady solutions of the governing equations, regardless

of stability, necessarily satisfy any and all statistically steady integral moments of
the equations. Consequently, steady solutions are always admissible when seeking
extrema and moreover provide a hard limit for any upper bound, no matter how
refined. In the case of convection, the oft-cited pair of papers, Roberts (1977, 1979),
would seem to limit the prospects for upper bounds as his asymptotic prediction
for the Nu(R) relation of the steady roll solution of maximum heat flux at infinite
Prandtl number still lies disappointingly far above representative data taken from
experiment and numerical simulation (it is clear that the gap cannot be explained
away as a consequence of the effects of finite Prandtl number). But in a subsequent,
unjustly neglected, paper Jimenez & Zufiria (1987) present a subtle and elegant chain
of reasoning that corrects a serious flaw in Roberts’ boundary-layer analysis. Where
Roberts predicts a heat flux of c(α)R1/3 peaking at c = 0.321 for a cell aspect ratio α of
0.75, Jimenez & Zufiria (1987) derive a corrected c(α), which crests at 0.20. While the
inference of a scaling law of R0.315 is simply inappropriate, Hansen, Yuen & Malevsky
(1992) is an otherwise sound vindication of Jimenez & Zufiria (1987). The Hansen
et al. data for their numerically determined two-dimensional steady-state solutions,
when plotted as a function of Nu/R1/3 up to R = 109, are clearly consistent with
Jimenez & Zufiria (1987) for α = 0.55. Our own recent spectral computations, also
carried to R = 109 but optimized over α, further confirm the Jimenez & Zufiria (1987)
result, not those of Roberts. Moreover, the exceedingly tight coincidence of the heat
flux computed in their time-dependent (also two-dimensional) solutions with the heat
flux of the corresponding steady (unstable) solution leaves open that a sufficiently
constrained upper bound result may come very close to observation.

To give the reader preliminary evidence that the potential for improvement in
the upper bound actually can be realized, we re-examine Case IV(a) but now ad-
dressing the solution of the associated Euler–Lagrange equations (3.1)–(3.2) by direct
numerical means, not perturbative. This is an especially elementary extension of the
Busse–Howard upper-bound problem and lends itself to ready computation using the
numerical algorithm previously discussed in § 3.2. For the purpose of comparison, we
show the large-R solution of Case I (recomputed for this figure, and in agreement with
both the previous computation by Straus 1976a and the more recent direct attack
on the multi-α problem appearing in Vitanov & Busse 1997). Figure 5(a) shows that
the perturbative reduction in Nu of table 3, if continued to large R, yields not only a
quantitative, but a qualitative change in the bound. Panel (b) makes this explicit with
a comparison of the numerically inferred exponents of the two curves. (The upper
curve tends to a value somewhat greater that 0.4, the line at 2/5 is simply an aid to
the eye.) The reduction to 1/3 is tantalizing, though it must be borne in mind that
this single-α result may give way to a multi-α solution at intermediate values of R.

This surprising, indeed gratifyingly, large influence of a single new constraint on
enstrophy is good evidence that the upper-bound problem is ripe for renewed attack.
Indeed, we have proposed a broader line of attack, with a new class of so-called
‘z-constraints’. Based on symmetries, the assumption of statistical steadiness, and
kinematic and dynamic identities, not all such z-constraints are effective; many are
vacuous. We have presented arguments in favour of specific forms. These affect the
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Figure 5. The influence of 〈γ2〉t = 0 in reducing the bound on Nu.
Symbols in (a) are experimental results.

symmetry of the upper-bound solution, in particular precluding the appearance of
‘single-α’ solutions. While perturbation theory has pointed out both potential peril and
potential promise, it remains to explore the numerical consequences of this exciting
new field.

Our inspiration for this exploration is the forty-five year ongoing odyssey of Willem
Malkus in search of deductive and quantitatively useful results on turbulence. Over
the course now of many years, he has patiently and generously shared his time and
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his enthusiasm in conversations with each of us. Without this stimulus, the present
work would never have come to fruition. Willem has spoken often of establishing a
‘language of inquiry’. To such an end we hope that with this work we have perhaps
added a few new words.

R. A. W. wishes to thank the NSF for support he received through grant ATM92-
08373, while a graduate student at MIT. (Indeed, the first two sections of this paper
are a minor revision of material completed by R. A. W. in his thesis.)
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